新疆生产SBGB70X25型号_海航金属波纹管
欢迎访问海航有限责任公司

海航集团股份有限公司始创于1985年11月,是一家集科研、制造、销售、服务于一体的民营科技企业,历经三十多年的风雨历程,在水族休闲、养殖机械、工业配套等行业不断引领新的潮流。 海航在集团本部设立了质量管控中心、产品拓展中心、营销管理中心、技术研发中心、行政人资中心、采购供应中心、广告信息中心、财务管控中心和投资中心九大职能部门,全资控股舟山格池、浙江佳璐、江苏海航、重庆{公

收藏本站| 设为首页|网站地图
海航
海航电话

8008-108-888

新疆生产SBGB70X25型号

来源:海航

关键词:不锈钢真空波纹管 ;金属波纹管和金属软管 ;金属波纹管价格表

因此,在前端设计水平相当的情况下,使用石墨烯制造的芯片要比使用硅基材料的芯片性能强几十倍,随着技术发展,进一步挖掘潜力,性能可能会是传统硅基芯片的上百倍!同时还拥有更低的功耗。

石墨烯因其超薄结构以及优异的物理特性,在 FET 应用上展现出了优异的性能和诱人的应用前景. 如 Obradovic 等研究发现,与碳纳米管相比,石墨烯 FET 拥有更低的工作电压﹔Wang等所制备的栅宽 10nm 以下的石墨烯带 FET 的开关比达 10e7﹔Wu 等采用热蒸发 4H-SiC 外延生长的石墨烯制备的 FET,其电子和空穴迁移率分别为 5,400 和 4,400cm2/(V·s),比传统半导体材料如 SiC 和 Si 高很多﹔Lin 等制备出栅长为 350nm 的高性能石墨烯 FET,其载流子迁移率为 2700 cm2/(V·s),截止频率为 50 GHz,并在后续研究中进一步提高到 100 GHz﹔Liao 等所制备的石墨烯 FET 的跨导达 3.2 mS/μm,并获得了迄今为止最高的截止频率 300 GHz,远远超过了相同栅长的 Si-FET (~40GHz)。

然而, 由于石墨烯的本征能隙为零,并且在费米能级处其电导率不会像一般半导体一样降为零,而是达到一个最小值,这对于制造晶体管是致命的,为石墨烯始终处于“开”的状态。

另外,带隙为零意味着无法制作逻辑电路,这成为石墨烯应用于晶体管等器件中的主要困难和挑战。因此, 如何实现石墨烯能带的开启与调控,亟待研究和解决。据文献报道,一般采用两种方法实现石墨烯能带的开启与调控,即﹕掺杂改性和形貌调控。Nature Nanotechnology 评论明确指出﹕要深入挖掘石墨烯的优异物理特性,以制备高性能石墨烯 FET,其重要基础和关键之一是获得宽度与厚度(即层数)可控的高质量石墨烯带状结构。带状石墨烯因其固有而独特的狭长“扶椅”或“之”状边缘结构效应、量子限域效应而具有丰富的能带结构,其能隙随着石墨烯的宽度减小而增大,且和石墨烯的厚度密切相关,成为石墨烯 FET 沟道材料的理想选择。

纳米碳材料,特别是石墨烯具有极其优异的电学、光学、磁学、热学和力学性能,是理想的纳电子和光电子材料。石墨烯具有特殊的几何结构,使得费米面附近的电子态主要为扩展π态。由于没有表面悬挂键,表面和纳米碳结构的缺陷对扩展 π 态的散射几乎不太影响电子在这些材料中的传输,室温下电子和空穴在石墨烯中均具有极高的本征迁移率 (大于 100000 cm2/(V·s)),超出最好的半导体材料(典型的硅场效应晶体管的电子迁移率为 1000 cm2/(V·s))。

作为电子材料,石墨烯可以通过控制其结构得到金属和半导体性管。在小偏压的情况下,电子的能量不足以激发石墨烯中的光学声子,但与石墨烯中的声学声子的相互作用又很弱,其平均自由程可长达数微米,使得载流子在典型的几百纳米长的石墨烯器件中呈现完美的弹道输运特征。典型的金属性石墨烯中电子的费米速度为 υF= 8×10e5 m/s,室温电阻率为 ρ = 10E6 Ω-cm,性能优于最好的金属导体,例如其电导率超过铜。由于石墨烯结构中的 C–C 键是自然界中最强的化学键之一,不但具有极佳的导电性能,其热导率也远超已知的最好的热导体,达到 6,000 W/mK。

金属波纹管:新疆生产SBGB70X25型号
新疆生产SBGB70X25型号

此外石墨烯结构没有金属中的那种可以导致原子运动的低能缺陷或位错,因而可以承受超过 10e9 A/cm2 的电流,远远超过集成电路中铜互连线所能承受的 10e6A/cm2 的上限,是理想的纳米尺度的导电材料。理论分析表明,基于石墨烯结构的电子器件可以有非常好的高频响应,对于弹道输运的晶体管其工作频率有望超过 THz, 性能优于所有已知的半导体材料。

现代信息技术的基石是集成电路芯片,而构成集成电路芯片的器件中约 90% 是源于硅基 CMOS(complementary metal-oxide-semiconductor),互补金属-氧化物-半导体)技术,而硅基 CMOS技术的发展在 2005年国际半导体技术路线图 (International Technology Roadmap for Semiconductors, ITRS)宣布将在 2020 年达到其性能极限。原因在 CMOS 技术的核心是高性能电子 (n-)型和空穴 (p-)型场效应晶体管 (field effect transistor, FET)的制备,以及将这两种互补的场效应晶体管集成的技术。

随着晶体管尺度的缩小,器件加工的均匀性问题变得越来越严重,其中最为重要的是器件的加工精度和掺杂均匀性的问题。采用传统的微电子加工技术,目前最好的加工精度约为 5nm。随着器件尺度的不断缩小,对应的晶体管通道的物理长度仅为十几纳米,场效应晶体管源漏电极之间的载流子通道的长度的不确定性将不再可以忽略不计,所以半导体材料中的掺杂均匀性问题将是另一个难以克服的问题。

这个领域的主流方向一直是沿用硅基技术的思路,即通过掺杂,例如 K 掺杂来制备石墨烯 n型器件,但结果都不尽如人意。其中主要的问题是石墨烯具有一个非常完美的结构,表面完全没有悬挂键,一般不和杂质原子成键,是自然的本征材料。采用与石墨烯结合较弱的 K原子掺杂结果一是不稳定,二是很难控制,不大可能满足高性能集成电路的要求。2005 年美国 Intel 公司 Chau 等人对纳米电子学的发展状况进行了总结, 他们对石墨烯基器件的主要结论是: 虽然其 p 型晶体管的性能远优于相应的硅基器件, 但其 n 型石墨烯晶体管的性能则远逊于相同尺寸的硅基器件。集成电路的发展要求性能匹配的 p 型和 n 型晶体管,n 型碳石墨烯晶体管性能的落后严重制约了石墨烯电子学的发展, 发展稳定的高性能 n 型石墨烯器件成了 2005 年之后石墨烯 CMOS 电路研究领域最重要的课题之一。

从目前石墨烯电子学已经取得的进展来看,至少有两个重要的方面是可以确认的。第一是石墨烯器件相对于硅基器件来说具有更好的特性,无论是速度、功耗还是可缩减性,而且可以被推进到 8nm 甚至 5nm 技术节点,这正是 2020 年之后数字电路的目标。第二是石墨烯的数字集成电路的方案是可行的。

在实验室人们已经实现各种功能的电路,原则上已经可以制备任意复杂的集成电路,特别是 2013 年 9月 26日美国斯坦福大学的研究人员在《Natures》杂志上报道采用碳纳米管制造出由 178 个晶体管组成的计算机原型。虽然目前这个原型机尚在功耗、速度方面不能和基于硅芯片模式的先进计算机比肩,但这项工作在国际上引起了巨大反响, 使得人们看到了碳基电子学时代初露的曙光。

本文由海航整理发布,转载请注明出自http://www.uggsoutlet-sales63.com/3om0/76ma.html

上一篇:湿法烟气脱硫氧化空气量不足的原因及应对措施下一篇:搜索金属波纹管,飞儿,力量,乐团,的,爱,r,i,f,.,歌曲试听,免费下载,MP3下载,体验千千音乐高品质享受。

搜索金属波纹管,飞儿,力量,乐团,的,爱,r,i,f,.,歌曲试听,免费下载,MP3下载,体验千千音乐高品质享受。相关文章

搜索金属波纹管,飞儿,力量,乐团,的,爱,r,i,f,.,歌曲试听,免费下载,MP3下载,体验千千音乐高品质享受。图文资讯

友情链接【Links】

海航|支撑梁拆除 |婚庆|会议系统 |喷丸机|拆除|银杏树价钱